2362

contributions to the paramagnetic shielding, *B*, mainly determine the rhodium chemical shifts. This parallels the result found for similar platinum complexes.¹⁶ Likewise, substitution of the carbonyl group for a phosphine group in the rhodium(I) complexes seems to produce a red shift in the absorption spectra. If the ΔE term is dominant, then the rhodium nucleus should be less shielded in the carbonyl complex than in the tristriphenylphosphine complex. The carbonyl complex is observed at higher field, again indicating a greater dependence of σ on the other terms in eq 1.

Obviously an estimate of the other factors which could effect the paramagnetic shielding of the rhodium and phosphorus nuclei is difficult at this time. These experimental results may, however, give some insight into the shielding mechanism. Further experimental, as well as theoretical, studies are in progress in the hope of further understanding these parameters.

Acknowledgments. We wish to thank Dr. C. F. Liu for many helpful discussions and comments. We also wish to thank Mr. Randall Vitek for carrying out many of the preparations.

Formation and Fluorine-19 Nuclear Magnetic Resonance Spectra of the Polyfluorosulfuric Acids, $H(SO_3)_*F$. Existence of the Polyfluorosulfuric Acids in SbF_5 -HSO₃F

P. A. W. Dean and R. J. Gillespie

Contribution from the Department of Chemistry, McMaster University, Hamilton, Ontario, Canada. Received October 18, 1969

Abstract: Direct evidence for the formation of the polyfluorosulfuric acids, HS_2O_6F , HS_3O_9F , ..., $HS_7O_{21}F$, in solutions of SO_3 in HSO_3F or HSO_3F - SO_2ClF has been obtained by the observation of separate ¹⁹F nmr signals from each of these species at low temperature. Recent evidence for the formation of these acids in HSO_3F - SbF_5 systems is shown to be incorrect.

The Raman and room temperature ${}^{19}F$ nmr spectra of solutions of SO₃ in HSO₃F have been studied previously¹ and the results have been interpreted as providing evidence for the formation of the polyfluorosulfuric acids $H(SO_3)_nF$. New lines that appear in the Raman spectrum on addition of SO₃ to HSO₃F could be satisfactorily interpreted as being due to the formation of HS_2O_6F and HS_3O_9F and further changes in the Raman spectrum at high SO₃ concentrations indicated, but did not prove, the existence of higher members of the series of polyfluorosulfuric acids. On addition of SO₃ to HSO₃F, only a single line was observed in the room temperature ¹⁹F nmr spectrum, but it showed a large shift to low field with increasing concentration of SO₃. This large shift could only be reasonably interpreted as indicating the formation of a series of polyfluorosulfuric acids, but separate signals from the different acids were not obtained.

A recent ¹⁹F nmr and Raman spectroscopic study by Commeyras and Olah² of concentrated solutions of SbF₅ in HSO₃F has provided evidence for the formation of SbF₆⁻ and Sb₂F₁₁⁻ anions in these systems. The formation of these anions had not been observed in the more dilute solutions previously investigated by Thompson, *et al.*,³ in which it was shown that the following equilibria are set up. $SbF_5 + 2HSO_3F \longrightarrow H_2SO_3F^+ + SbF_5(SO_3F)^ 2SbF_5 + 2HSO_3F \longrightarrow H_2SO_3F^+ + (SbF_5)_2SO_3F^-$

In order to account for the formation of SbF_6^- and $Sb_2F_{11}^-$, Commeyras and Olah proposed the following additional equilibria, including the formation of the polyfluorosulfuric acids HS_2O_6F and HS_3O_9F .

$$HSO_{3}F \xrightarrow{} SO_{3} + HF$$

$$SbF_{5} + HF \xrightarrow{} HSbF_{6}$$

$$2SbF_{5} + HF \xrightarrow{} HSb_{2}F_{11}$$

$$SO_{3} + HSO_{3}F \xleftarrow{} HS_{2}O_{6}F$$

$$2SO_{3} + HSO_{3}F \xleftarrow{} HS_{2}O_{6}F$$

In support of this scheme they attributed lines at approximately -69 and -32 Hz from HSO₃F in their 56.4 MHz ¹⁹F nmr spectra to the species HS₂O₆F and HS₃O₉F, respectively. The scheme seems unlikely as there is no evidence for any appreciable dissociation of fluorosulfuric acid into SO₃ and HF.⁴ Furthermore it has been shown that SbF₆⁻ and Sb₂F₁₁⁻ are also formed in the SbF₅-H₂O and SbF₅-H₂SO₄ systems in solution in SO₂.⁵ Hence it is clear that the additional fluoride required to convert SbF₅ to SbF₆⁻ or Sb₂F₁₁⁻ need not come from dissociation of the HSO₃F, and it has been demonstrated that the SbF₆⁻ and Sb₂F₁₁⁻ can arise *via*

⁽¹⁾ R. J. Gillespie and E. A. Robinson, Can. J. Chem., 40, 675 (1962).

⁽²⁾ A. Commeyras and G. A. Olah, J. Amer. Chem. Soc., 91, 2929 (1969).
(3) R. C. Thompson, J. Barr, R. J. Gillespie, J. B. Milne, and R. A

⁽³⁾ R. C. Inompson, J. Barr, R. J. Omespie, J. B. Minie, and R. A Rothenbury, *Inorg. Chem.*, 4, 1641 (1965).

⁽⁴⁾ R. J. Gillespie, J. B. Milne, and R. C. Thompson, *ibid.*, 5, 468 (1966).

⁽⁵⁾ P. A. W. Dean and R. J. Gillespie, J. Amer. Chem. Soc., 91, 7264 (1969).

Table I. ¹⁹F Chemical Shifts of the Polyfluorosulfuric Acids and Equilibrium Compositions of SO₃-HSO₃F Mixtures

Solution		1	2°	3ª
SO3: HSO3F ratio		0.241	1.12	1.94
¹⁹ F chemical shift (Hz) and	HSO ₃ F	0 (80)	0 (29)	0 (14)
(in parentheses) percentage	HS ₂ O ₄ F	-182(20)	-167(53)	-158 (49)
total fluorine for each acid	HS ₃ O ₉ F		-318(17)	-312(27)
	HS ₄ O ₁₂ F		$-402(3)^{2}$	-400(8)
	HS ₅ O ₁₅ F		-429(1)	-427(2)
	HS ₆ O ₁₈ F		-454 (~0.2)	~ -448 (~ 0.2
	HS ₇ O ₂₁ F			~ -453 (~ 0.1
Percentage of initial SO ₃ present	. – .			•
in solution as free SO_3		15%	10%	28%

^a Solutions in excess SO₂ClF.

ligand redistribution of the type

 $2SbF_5X^- \xrightarrow{} SbF_6^- + SbF_4X_2^-$

We have therefore reinvestigated the 19 F nmr spectra of the HSO₃F-SO₃ system at low temperatures in an attempt to obtain the 19 F nmr spectra of the polyfluoro-sulfuric acids.

Results and Discussion

Temperatures of -100° or below are necessary to observe the ¹⁹F nmr spectra of the polyfluorosulfuric acids. Solutions of SO₃ in HSO₃F alone are rather viscous at such temperatures but satisfactory spectra can be obtained from dilute solutions. Using the inert diluent SO₂ClF it is possible to obtain solutions with much larger SO₃/HSO₃F ratios which also have greatly reduced viscosities at low temperatures.

The -110° ¹⁹F nmr spectrum of a solution in which SO_3 : HSO₃F: SO₂ClF = 1.94: 1.00: 2.85 shows a single line from the diluent and, in addition, seven lines in the region expected for the -SO₃F group, as shown in Figure 1. The highest field line is due to HSO₃F, and it seems reasonable to assign the other six to an equilibrium mixture of the polyfluorosulfuric acids, $H(SO_3)_nF$, with n = 2-7 and n increasing toward lower applied fields. (The spectrum also shows a small sharp line at -423 Hz from HSO₃F due to an unidentified impurity or reaction product which does not undergo rapid fluorine exchange at higher temperatures, as do the polyfluorosulfuric acids.) This assignment is consistent with the observed diminished intensity of the lower field lines with respect to the higher, as the ratio SO₃: HSO₃F decreases, as illustrated by the results in Table I. At approximately -60° , the lines from fluorosulfate-containing species merge, and at room temperature only a single averaged line is observed as has been previously observed.¹ The chemical exchange must occur through dissociations of the type illustrated by (1). From the

$$S_2O_6F^- \longrightarrow SO_3F^- + SO_3$$
 (1)

compositions of the solutions and the relative amounts of the polyfluorosulfuric acids, it is possible to calculate the percentage of the total added SO_3 which is free in the solutions; the amount is seen to be appreciable (Table I), in agreement with the conclusions of a previous Raman study of SO_3 -HSO₃F.¹ It is also clear that the amount of free sulfur trioxide is sensitive to the presence of the inert solvent SO_2CIF . Previous workers⁶ have shown that a monomer-trimer equilibrium

(6) R. J. Gillespie and E. A. Robinson, Can. J. Chem., 39, 2189 (1961).

exists in solutions of SO_3 in inert solvents; presumably a shift in this equilibrium in the present case is responsible for the apparent discrepancy between the results for solutions 1 and solutions 2 and 3.

Figure 1. ¹⁹F nmr spectrum $(-110^{\circ}, 56.4 \text{ MHz})$ of solution 3 (* = impurity peak).

A statistical mechanical treatment^{7,8} has shown that all equilibria such as (2), in which unbranched chain

$$H(SO_3)_n F \longrightarrow H(SO_3)_{n-1}F + H(SO_3)_{n+1}F$$
(2)

molecules react to give unbranched chains as products, should have an equilibrium constant, K_n , of unity when the equilibrium distribution of chain sizes is statistically random. The present data are necessarily rather limited by the compositions of mixtures homogeneous below -100° . However the values of the equilibrium constants calculable from the tabulated results, $K_2 = 0.14-0.16$, $K_3 = 0.55-0.54$ (solutions 2 and 3, respectively), and $K_4 \approx 0.8$ (solution 3), are clearly not unity, but appear to be approaching this value with increasing chain length. A similar deviation of K_n from unity in the case of the dimethyl polysulfates, has been interpreted⁸ as meaning that the thermodynamic properties of the polymer units are not independent of the position of the unit with respect to the

(7) D. W. Scott, J. Amer. Chem. Soc., 68, 2294 (1946).

(8) J. R. Van Wazer, D. Grant, and C. H. Dungan, *ibid.*, 87, 3333 (1965).

2364

end of the chain; it follows that the largest deviations will occur for the shortest chains. The same explanation must be applicable to the polyfluorosulfuric acids.

It is interesting to compare the chemical shifts in the series of polyfluorosulfuric acids with those observed previously in the polysulfuryl fluorides (Table II).

 Table II.
 The ¹⁹F Chemical Shifts of Polyfluorosulfuric Acids

 and Polysulfuryl Fluorides

	Chemical shift, Hz	
	$-OH^{a,c}$	$-F^{b \cdot c}$
F(SO ₃)SO ₂ X	-158	- 880
F(SO ₃) ₂ SO ₂ X	-312	-96 0
F(SO ₃) ₃ SO ₂ X	-400	- 989
F(SO ₃) ₃ SO ₂ X	-427	 99 8
F(SO ₃) ₄ SO ₂ X	- 448	-1003
F(SO ₃) ₅ SO ₂ X	- 453	-1005.5

^a This work. ^b From the data of R. J. Gillespie, J. V. Oubridge, and E. A. Robinson, *Proc. Chem. Soc.*, 428 (1961), referenced to SO_2F_2 using $\delta(S_2O_3F_2) - \delta(SO_2F_2) = 880$ Hz (this work). ^c Referred to either HSO₃F or SO₂F₂.

After a very large chemical shift between SO_2F_2 and $S_2O_5F_2$, the shifts between the next members of the series are smaller than for the corresponding polyfluorosulfuric acids, and the series converges more rapidly. In neither series could a separate signal be detected for S_8 or higher members of the series. Unfortunately no simple explanation of these chemical shifts appears possible at present.

It is clear from the chemical shifts of HS_2O_6F and HS_3O_9F (Table II) that the signals observed by Com-

meyras and Olah² at ~ -68 and ~ -32 Hz from HSO₃F cannot be attributed to these species. These lines may reasonably be assigned to the fluorosulfate groups in fluorosulfate-containing complexes of antimony which arise by ligand redistributions such as

$$SbF_{5}(SO_{3}F)^{-} \longrightarrow SbF_{6}^{-} + SbF_{4}(SO_{3}F)_{2}^{-}$$

as discussed above.

Experimental Section

Nmr Measurements. Low-temperature nmr spectra were obtained using a Varian DA-601L spectrometer, equipped with a Varian V4540 temperature controller and the variable temperature probe, and operating at 56.4 MHz in the center band mode.

The areas under various peaks were measured by recording several spectra, cutting out the peaks and weighing them.

Materials. Sulfur trioxide and fluorosulfuric acid were purified by the standard methods. Sulfuryl chlorofluoride was prepared from potassium fluorosulfinate and chlorine according to Seel and Riehl.⁹

Sample Preparation. In a circulating drybox a weighed amount of fluorosulfuric acid was transferred to a baked-out 5-mm nmr tube using a glass syringe with a platinum needle. The tube was closed with a detachable top and connected to a standard glass vacuum line. After degassing the acid, sulfur trioxide was condensed into the tube from a weighed container and the amount of SO₃ determined by difference. If no further material was to be added, the tube was then sealed; otherwise SO₂CIF was condensed in from the precalibrated vacuum line prior to sealing. The solutions were mixed by heating to *ca*. 50° with frequent shaking.

Acknowledgments. We thank the Directorate of Chemical Sciences of the U.S. Air Force Office of Scientific Research for generous financial assistance.

(9) F. Seel and L. Riehl, Z. Anorg. Allgem. Chem., 282, 293 (1955).